Quadratic Equation Questions And Answers Quiz 18

By Shiva
May 05, 2017
0 Comments

1 . Directions (Q. 1 - 5): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(1) if x > y
(2)if x ≥ y
(3) if x < y
(4) if x ≤ y
(5) if x = y or no relation can be established between x and y.

$Q.$
I.$ 63x - 94\sqrt{x} + 35 = 0$
II. $32y - 52\sqrt{y} + 21 = 0$

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    x = y or no relation can be established between ‘x’ and ‘y’.
2 . I.$ x^2 - 7\sqrt{3}x - 35\sqrt{15} = 5\sqrt{5}x$
II.$ y^2 - 5\sqrt{5}y + 30 = 0$

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    $ x \leq y$
3 . I. $14x^ 2 $ + 11x - 15 = 0
II. $20y^ 2 $ - 31y + 12 = 0

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    $ x \leq y$
4 . I. 5x + 4y = 41
II. 4x + 5y = 40

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    $ x \leq y$
5 . I. $\sqrt{x}$ - $(18)^{15\over 2}\over x ^{2}$ = 0
II. $\sqrt{y}$ - $(19)^{9\over 2}\over y$ = 0

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    $ x \leq y$
6 . Directions (Q. 6 - 10) : In each of these questions, two equations (I) and (II) are given. Solve both the equations and give answer
(1) if x > y
(2) if x < y
(3) if x ≥ y
(4) if x ≤ y
(5) if x = y or no relation can be established between ‘x’ and ‘y’.

$Q.$
I . $63x - 194\sqrt{x} + 143 = 0$
II .$ 99y - 225\sqrt{y} + 150 = 0$

A.    $ x > y$
B.    $ x \geq y $
C.    $ x < y$
D.    x = y or no relation can be established between ‘x’ and ‘y’.
7 . I. $ 16x^ 2$ - 40x - 39 = 0
II. $12y^ 2 $ - 113y + 255 = 0

A.    $ x > y$
B.    x < y
C.    x ≥ y
D.    $ x \leq y$
8 . I. $x - 7\sqrt{3}x + 36 = 0$
II. $y - 5\sqrt{3}y - 7\sqrt{2}y + 70 = 0 $

A.    $ x > y$
B.    x < y
C.    x ≥ y
D.    $ x \leq y$
9 . I . $x^2 - 7\sqrt{x} + 84$ = 0
II . $y^2 - 5\sqrt{5} + 30$ = 0

A.    $ x > y$
B.    x < y
C.    x ≥ y
D.    $ x \leq y$
10 . I. 10x + 6y = 13
II. 45x + 24y = 56

A.    $ x > y$
B.    x < y
C.    x ≥ y
D.    $ x \leq y$
Answers & Solutions
1 .    
Answer : Option D
Explanation :
I.$ 63x - 94\sqrt{x} + 35 = 0$
or, $63x - 49\sqrt{x} - 45\sqrt{x} + 35 = 0$
or, $(9\sqrt{x} - 7)(7\sqrt{x} - 5) = 0$
x = $49\over 81$, $25\over 49$

II. $32y - 52\sqrt{y} + 21 = 0$
or, $32x - 28\sqrt{x} - 24\sqrt{x} + 21 = 0$
or, $(4\sqrt{y} - 3)(8\sqrt{y} - 7) = 0$
y = $9\over 16$, $49\over 64$

Therefore relation can't be established between x and y.
2 .    
Answer : Option A
Explanation :
I.$ x^2 - 7\sqrt{3}x - 35\sqrt{15} = 5\sqrt{5}x$
or,$ x^2 - 7\sqrt{3}x - 5\sqrt{3}x - 35\sqrt{15} = 0 $
or, $(x - 7\sqrt{5})(x - 5\sqrt{5}) = 0$
x = 7$\sqrt{3}$, $5\sqrt{5}$

II.$ y^2 - 5\sqrt{5}y + 30 = 0$
or,$ y^2 - 3\sqrt{5}y - 2\sqrt{5}y + 30 = 0 $
or, $(y - 3\sqrt{5})(y - 2\sqrt{5}) = 0$
y = 3$\sqrt{5}$, $2\sqrt{5}$

x > y
3 .    
Answer : Option C
Explanation :
I. $14x^ 2 $ + 11x - 15 = 0
or (7x - 5) (2x + 3) = 0
x = $5\over 7$, - $3\over 2$

II. $20y^ 2 $ - 31y + 12 = 0
or (4y - 3), (5y - 4) = 0
y = $3\over 4$ , $4\over 5$

x < y
4 .    
Answer : Option A
Explanation :
I. 5x + 4y = 41 ... (i)
II. 4x + 5y = 40 ... (ii)
On solving both equations, we have

x = 5 and y = 4

x > y
5 .    
Answer : Option C
Explanation :
I. $\sqrt{x}$ - $(18)^{15\over 2}\over x ^{2}$ = 0
or $x ^ {5\over 2}$ = $(18)^{15\over 2}$
x = $(18)^3$

II. $\sqrt{y}$ - $(19)^{9\over 2}\over y$ = 0
or $y ^ {3\over 2}$ = $(19)^{9\over 2}$
y = $(19)^3$

x < y
6 .    
Answer : Option D
Explanation :
I . $63x - 194\sqrt{x} + 143 = 0$
or $63x - 117\sqrt{x} - 77\sqrt{x} + 143 = 0$
or $(7\sqrt{x} - 13)(9\sqrt{x} - 11) = 0$
x = $169\over 49$, $121\over 81$

II .$ 99y - 225\sqrt{y} + 150 = 0$
or $99y - 90\sqrt{x} - 165\sqrt{x} + 143 = 0$
or $(11\sqrt{y} - 10)(9\sqrt{y} - 15) = 0$
x = $100\over 121$, $225\over 81$

Therefore relation cannot be established between x and y.
7 .    
Answer : Option B
Explanation :
I. $ 16x^ 2$ - 40x - 39 = 0
or $ 16x^ 2$ - 52x + 12x - 39 = 0
or (4x- 13) (4x + 3) = 0
x = $13\over 4$, - $3\over 4$

II. $12y^ 2 $ - 113y + 255 = 0
or $12y^ 2$ - 45y - 68y + 255 = 0
or (4y - 15) (3y - 17) = 0
y = $15\over 4$, $17\over 3$

Therefore x < y
8 .    
Answer : Option B
Explanation :
I. $x - 7\sqrt{3}x + 36 = 0$
or$ x - 7\sqrt{3}x \sqrt{x} + 36 = 0$
or$ x - 3\sqrt{3}x \sqrt{x} - 4\sqrt{x} \sqrt{x} + 36 = 0$
or $(\sqrt{x} - 3\sqrt{3})( \sqrt{x} - 7\sqrt{3}) = 0$
x = 27 , 48

II. $ y - 5\sqrt{3}y - 7\sqrt{2}y + 70 = 0$
or $y - 5\sqrt{2}y \sqrt{y} - 7\sqrt{2}y \sqrt{y} + 70 = 0$
or $(\sqrt{y} - 5\sqrt{2})( \sqrt{y} - 7\sqrt{2}) = 0$
y = 50 , 98

x < y
9 .    
Answer : Option A
Explanation :
I . $x^2 - 7\sqrt{x} + 84$ = 0
or $(x - 4\sqrt{7})(x - 3\sqrt{7})$ = 0
x = $4\sqrt{7}$, $3\sqrt{7}$

II . $y^2 - 5\sqrt{5} + 30$ = 0
or $(y - 2\sqrt{5})(x - 3\sqrt{5})$ = 0
y = $2\sqrt{5}$, $3\sqrt{5}$

x > y
10 .    
Answer : Option B
Explanation :
I. 10x + 6y = 13
II. 45x + 24y = 56
On solving both eqns, x = $4\over 5$, y = $5\over 6$
x < y
Leave your comment
*Name
*Email
 Comment
*Verify
 
Comments
No comments found!

Exams

Banking

SBI PO Preliminary

SBI Clerk Prelims

SBI PO Mains

SBI Clerk Mains

IBPS Clerk Prelims

IBPS Clerk Mains

IBPS PO Prelims

IBPS PO Mains


ssc

SSC CGL Tier 1

SSC CGL Tier II


Get In Touch

Address

18-1-734/a1, brindhavan house, bhavani nagar, Tirupati 517501

Email- support@todaysprint.com

phone - +919502398203