KeerthanaPosted on (i) 3x² + 11x + 10 = 0 (ii) 2y² + 11y + 14 = 0 a x ≥ y b x ≤ y c x > y d x < y e x = y or no relation can be established between x & y. Answer : Option AExplanation : I. 3x2+11x+10=03{x^2} + 11x + 10 = 03x2+11x+10=0 3x2+6x+5x+10=03{x^2} + 6x + 5x + 10 = 03x2+6x+5x+10=0 3x(x+2)+5(x+2)=03xleft( {x + 2} ight) + 5left( {x + 2} ight) = 03x(x+2)+5(x+2)=0 x=−2,−53x = - 2,frac{{ - 5}}{3}x=−2,3−5II. 2y2+11y+14=02{y^2} + 11y + 14 = 02y2+11y+14=0 2y2+7y+4y+14=02{y^2} + 7y + 4y + 14 = 02y2+7y+4y+14=0 y(2y+7)+2(2y+7)=0yleft( {2y + 7} ight) + 2left( {2y + 7} ight) = 0y(2y+7)+2(2y+7)=0 $egin{array}{*{20}{c}} {y = - 2, - frac{7}{2}}\ {X ge y} end{array}$ Rate This:NaN / 5 - 1 votesAdd comment