KeerthanaPosted on Directions(Q.26 to Q.30 ): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer II. 2y2−y−15=02{y^2} - y - 15 = 02y2−y−15=0 a if x>y b if x≥y c if xd if x ≤y e if x = y or no relation can be established between x and y. Answer : Option AExplanation : I. x2−13x+40=0{x^2} - 13x + 40 = 0x2−13x+40=0 x2−5x−8x+40=0{x^2} - 5x - 8x + 40 = 0x2−5x−8x+40=0 x(x−5)−8(x−5)=0xleft( {x - 5} ight) - 8left( {x - 5} ight) = 0x(x−5)−8(x−5)=0 x=5,8x = 5,8x=5,8II. 2y2−y−15=02{y^2} - y - 15 = 02y2−y−15=0 2y2−6y+5y−15=02{y^2} - 6y + 5y - 15 = 02y2−6y+5y−15=0 2y(y−3)+5(y−3)=02yleft( {y - 3} ight) + 5left( {y - 3} ight) = 02y(y−3)+5(y−3)=0 y=3,−5/2y = 3, - 5/2y=3,−5/2 x>yx > yx>y Rate This:NaN / 5 - 1 votesAdd comment